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Dynamics of Phase-Separated Fluids 
Under External Fields 1 

T. Ohta,  2' 3 A. Ito, 2 and M. M o t o y a m a  2 

Phase separation in external fields has attracted much attention recently. The 
reason is twofold. Since kinetics of phase separation and morphology of growing 
domains can be controlled by external fields, it is of technological importance. 
The other is that existence of mesoscale domains causes curious dynamical 
properties in fields, which provides us with a fundamental statistical dynamic 
problem. One example is a phase separation of binary fluids under shear flow. 
Phase-separated domains are deformed under the field, which causes burst, 
fusion, and reconnection of domains so that extra energy dissipation occurs in 
these processes. Because of this large deformation of domains, the system 
exhibits quite unusual theological behavior. The kinetics of phase separation of 
binary fluids is also influenced by an external electric field when the new phases 
have different dielectric constants. Deformation and interaction of domains in 
an electric field are investigated by means of an interfacial approach. 

KEY WORDS: binary fluid; dielectric constant; domain rheology; electric 
field; normal stress difference; phase separation; shear flow. 

I. I N T R O D U C T I O N  

After  a b ina ry  sys tem is q u e n c h e d  be low a p h a s e - s e p a r a t i o n  t empera tu re ,  

d o m a i n s  of  the o r d e r e d  phases  fo rm and  grow.  If we app ly  s o m e  ex terna l  

fields such  as f low and  electr ic  fields, we can  con t ro l  the kinet ics  and 

m o r p h o l o g y  of  g r o w i n g  m e s o s c o p i c  doma ins .  This  is of  t echno log ica l  

i m p o r t a n c e ,  and  a subs tan t i a l  n u m b e r  of  expe r imen t s  has been car r ied  ou t  

recent ly.  O n  the  o t h e r  hand ,  f rom a theore t i ca l  po in t  of  view, dynamics  of  

d o m a i n s  in fields p rov ides  us wi th  fasc ina t ing  unso lved  f u n d a m e n t a l  

p rob lems .  D o m a i n  d e f o r m a t i o n  unde r  the field causes  burst ,  fusion, and  
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reconnection of domains so that extra energy dissipation occurs in these 
processes. Thus, the response of the system to the fields easily enters a non- 
linear regime, so that anomalous effects are expected. 

In this paper, we discuss mainly two subjects. One is the domain 
rheology under steady shear flow. The other is the domain deformation 
and interaction under external electric field. 

The former subject was studied by Doi and Ohta [ 1 ]. It was predicted 
that anomalous rheological behavior appears even in weak shear. One of 
the characteristic features of a phase-separating fluid is that there is no 
intrinsic length (and time) scale. This causes asymptotically large deforma- 
tion of domains under a steady shear flow. Thus the stress-shear rate rela- 
tion becomes nonlinear and therefore the system exhibits a non-Newtonian 
behavior. In fact, the above prediction has been observed in recent 
experiments of polymer blends by Takahashi et  al. [2, 3]. In Section 2, we 
briefly describe these developments. 

In a system where the dielectric constant of domains is different from 
that of the surrounding matrix, one can control the domain morphology by 
applying an electric field. In fact, there are several experimental studies of 
phase separation under an external electric field. In a polymeric material, 
Adachi et  al. [-4] and Krause and her co-workers [-5] have explored 
domain deformation and instability by changing the magnitude of the 
electric field. 

In Section 3, starting with the model equations for binary critical 
fluids, we derive the interface equation of motion for the phase-separating 
process. We assume that the dielectric constant depends on the local order 
parameter so that this constant has a different value in each ordered phase. 

As a special case, we study, in Section 4, deformation of a single 
domain in an electric field based on the interface equation of motion. The 
interaction between two polarized domains mediated by both the electro- 
thermodynamic and the hydrodynamic effects is also obtained from our 
interface equation of motion. In Section 5, we discuss the results obtained 
and make a concluding remark. 

2. D O M A I N  R H E O L O G Y  

In a phase-separating process, domains of low-temperature phases 
appear and grow. When the volume fraction is 1/2, the domains constitute 
a randomly interconnected structure. If we apply a shear flow, these 
domains undergo deformation, burst, and recombine. This is responsible 
for the excess macroscopic stress. Because domains in fluids are easily 
deformable, a nonlinear effect is expected to emerge even in a relatively 
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weak shear. A phenomenological theory of this problem was proposed in 
Ref. I. Here we describe the essential part of the theory. 

First, we emphasize that the relevant characteristic time scale of 
deformed domains is not a relaxation time of the local order parameter 
but a relaxation time associated with interface motion. In the absence of 
flow, the relaxation rate Fr~ due to the concentration diffusion across the 
domains is given by 

L I  
FD - ~ / 3 ( 1 ) 

where L is an Onsager coefficient and ~ the interface width. The charac- 
teristic domain size is denoted by/ .  We have assumed /~> ~. In fluids, there 
is another relaxation mechanism due to the hydrodynamic interaction. The 
relaxation rate FH is given by 

e l  
FH = - -  (2) 

q / 

where a is the interfacial tension and q is the shear viscosity. For simplicity, 
we have assumed that the shear viscosity has the same value in the two 
phases. 

Here we make two remarks about the above relaxation rates. First, it 
is noted that the characteristic size / of domains is not a material constant 
but is a dynamical quantity increasing with time in the ordering process. 
Second, in polymeric materials, the shear viscosity is so large that the hydro- 
dynamic effect is not important in the early stage of the phase separation. 
Comparing Eqs. (1) and (2), however, one notes that the hydrodynamic 
relaxation eventually dominate the diffusional relaxation in the later stage, 
where / is sufficiently large. 

We are concerned with this situation where the hydrodynamic effect is 
relevant. Thus the steady shear rate ";, should be compared with F H. From 
this dimensional analysis we have a characteristic length/*  of the problem, 

a l  
/* = - -  (3) 

,I ~;' 

Here we again emphasize that (3) is the only quantity which has a dimen- 
sion of length constructed from the parameters of the system. 

The macroscopic stress tensor H due to domains has the dimension 
[1, 6] 

[ H ]  - [interracial tension] (4) 

[length] 
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Substituting Eq. (3) into Eq. (4) we obtain 

H = o7~ (5) 

where the positive constant c may depend on the average volume fraction. 
At first sight, Eq. (5) looks trivial. However, we should emphasize that 

we have not assumed any linearity between the stress and the shear rate in 
the derivation of Eq. (5). Equation (5) is a consequence of absence of any 
intrinsic length scales (and time scales) in the system and therefore is quite 
general. This unusual property will be dearer by noting that the above 
argument predicts the normal stress difference N to be proportional to the 
shear rate: 

N .w_ 1);[ (6) 

Equations (5) and (6) were also derived in Ref. 6 in a restricted condition 
based on a disconnected-droplet picture. 

Quite recently, Takahashi et  al. [2, 3] have performed viscoelastic 
experiments of immiscible polymer blends. They have indeed confirmed the 
anomalous relations expressed by Eqs. (5) and (6). Figures 1 and 2 show 
their results [3] for the shear stress and the normal stress difference, 
respectively. The system is a mixture of a polydimethylsiloxane (PDMS) 
and a polybutadiene (PB). The volume-fraction dependence is also seen in 

104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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10-2 100 102 
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Fig. 1. Shear stress a~2 versus shear rate ;; for 
several different volume fractions and for a pure 
PDMS and a pure PB system I-3]. 



Dynamics of Phase-Separated Fluids 

1 I14 

1139 

Z 

Ii12 

I tl 0 

, t  

m . e A  
a . o  A 

n . o  
m o o  • • 

* o  

2 

111-2 i11 (I 

~, S -I 

IO2 

Fig. 2. Normal stress difference N~ vcrsus 
shear rate ;~ [3]. The meaning of the symbols 
is the same as in Fig. 1. 

Figs. 1 and 2. In particular, the usual Newtonian behavior is evident in 
each pure system. This clearly indicates that the singularity in the normal 
stress difference Eq. (6) is attributed to the interfacial effects. 

3. I N T E R F A C E  E Q U A T I O N  OF M O T I O N  

In this section, we derive an interface equation of motion for growing 
domains subjected to an external electric field. We start with the model 
equations for critical fluid mixtures I-7]. The order parameter S is the local 
volume fraction of one of the components. When the static electric field is 
imposed on the system, the Ginzburg-Landau free energy functional H I S  } 
takes the following form: 

J" dr (VS) z + g ( S )  - ~:(S) E-" H,  L 

where g ( S )  has degenerate local minima at S = 0 and 1. The last term in 
Eq. (7) is the electrostatic energy. The local electric field is denoted E. 
Here we assume that the electric field is so weak that it does not alter 
quantitatively the equilibrium phase diagram. The dielectric constant r. is 

assumed to depend on S such that 

/ ~ ( S )  ~--- E M "{- ( ~ D  - -  E/Vl ) S  ( 8 )  
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The time evolution of the local order parameter is coupled with the local- 
velocity field v. These are governed by the following set of equations: 

PS ~SH 
- - + V . ( v S J = V : - -  (9) 
?t 6S  

?v = ( V S )  ~SH ,~--7 ~ + ,V :v  (10) 

where the system has been assumed to be incompressible V-v  = 0. For 
simplicity, we do not consider the case where the shear viscosity t l has a 
different value at each phase. 

When the system has no free charges, the electric field E obeys 

V x E = 0 .  V(~:E)= 0 (11) 

These equations are to be solved for a given domain configuration and 
under the condition E = 2E¢~ at infinity where ~ is the unit vector in the z 
direction and E~ is the magnitude of the external field. 

We can derive the interface equation of motion in a manner similar to 
that in Ref. 8. Since the relaxation of the velocity field v is much faster than 
that of tile order parameter S, we may put ~'v/g't = 0 in Eq. (10). Hence the 
local velocity v can be expressed in terms of [S].  On the other hand, the 
interface relaxation due to the hydrodynamic effect given by Eq. (2) is 
larger than that of the diffusion effect given by Eq. (1). Therefore we may 
ignore the right-hand side of Eq. (9). This means that the normal velocity 
of an interface is equal to the local velocity v at that point. In this way, we 
obtain the equation of motion as 

V(.~ = .f da' Z .i(a) Y, i (r( . ) -  r(a'~).j(a') 
i i  

x aKI.')-~j'chz' E(a', n')-" ? n ' j  (12) 

where 1"(,) is the normal component  of the interface velocity at point a on 
the interface, K the mean curvature, and ni the ith component  of the unit 
normal n. The Oseen tensor is denoted T#; its Fourier component  is given 
by 

(13) 
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We have introduced the local curvilinear coordinates (a', n'), where n' 
stands for the axis normal to the interface. The integral over a '  runs over 
all of the interfaces. 

If the difference of the dielectric constants ~:D--t:M is small, the 
Maxwell equations, Eq. (11), can be solved perturbatively. Up to first 
order, the solution is readily obtained as 

E~(k ) = ~. [ 6,/~6(k ) eD Z t:M k~kt~ 1 k2 S k E~'~ 
f l  g M " 

(14) 

where E ' ( k )  and S k are the Fourier components of E~(r) and S(r), respec- 
tively. Substituting Eq. (14) in to  the last term in Eq. (7), the electrostatic 
energy can be written in terms of S as 

I I:f 1 1 ( ~ : D - - ~ : M  d k  1 )2 
8rt drt:(S)E2= + 8 n  t:M (2n)3k_,(k'E¢~ SkS k (15) 

By means of Eq. (15), the last term in Eq. (12) can be written in a more 
convenient form: 

1 f ,  

4n ~:M j d a "  [E~  • V'G(r(a '  ), r(a"))]  E ~ .  n(a") (16) 

where - V 2 G ( r  ', r") = 6(r' - r"). 
Here we make a remark about Eq. (15). l fwe  regard E~x as a uniaxial 

external stress, Eq. (15) is equivalent with an increase in the elastic energy 
in solids. Hence Eq. (9) with v = 0  is a model for phase separation of 
binary solids under external load [9].  In the present problem, however, 
both the electrothermodynamic and the hydrodynamic coupling are 
relevant and therefore the dynamics of domains is entirely different from 
that in a solid system. 

4. I N T E R A C T I O N  A M O N G  D O M A I N S  

By applying an electric field, domains are elongated in the direction of 
the field. When the field is weak, each domain takes an elliptic form. As in 
Ref. 4, we introduce the deformation parameter D: 

a - -  h 
D = (17) 

a+h 
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where a and b are the major and minor semiaxes of the ellipsoid, respec- 
tively. The equation for D for a single domain deformed around a sphere 
with radius R can be derived from Eq. (12). The result is given by 

dD 16 a 9 I ~M(gD- -eM)2E~  
D +  (18) 

dt 35qR 354~ (e.D+2eM)2 q 

This is consistent with the known result [4-1 and provides a verification of 
the validity of the interface equation of motion given by Eq. (12). 

The interaction between two domains can also be obtained. We 
assume that the domains are spherical with radii a, and a2 for a weak 
electric field. The center of gravity is denoted Xi (i = 1, 2). Under the condi- 
tion that the distance between the domains is much larger than the radii, 
we obtain from Eq. (12) with Eq. (14), 

12 ~'E:x dX~ 1 {eD--~M 4 , 0 c '2 
dt = 4~z e. M t q -~  V'al- ~ ~ G ( X j - X , )  cX, ~X--, OX~ 

+ E ~ . x V I V 2 ~ T , I ~ ( X , _ X ,  ) _ 0  _ _ c ~ 2  G ( X , - X , ) }  (19) 
• , ,  - - 

where I.'~ is the volume of ith sphere. The first term is dominant at long dis- 
tance and it shows that the interaction is attractive for the configuration 
such that X~ - X  2 is parallel to the field direction, whereas it is repulsive for 
X , -  X2 perpendicular to this direction. 

5. DISCUSSION 

Domain growth in fluids under shear flow and in an electric field has 
been investigated. The prediction of anomalous rheological behavior [1]  is 
in a good agreement with experiments [2, 3]. However, the theory is essen- 
tially a dimensional analysis. It is not easy to develop a quantitative theory 
to describe burst and recombination of domains under flow. In fact, the 
phenomenological theory [ I ]  does not succeed in reproducing, in full 
detail, the time dependence of stress relaxation observed in experiments 
[2]. Thus there is plenty of room for improving the theory. 

In the case of fluid mixtures in an electric field, we have derived the 
interface equation of motion in a closed form when the difference of the 
dielectric constants is small. The problem is more difficult compared to 
solid systems because the domain motion is caused by the hydrodynamic 
effect as well as the electrothermodynamic one. When the strength of 
the external field is small, we are able to deal with these interactions 
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analytically and derive the equation of motion for spherical domains. This 
interfacial approach together with computer simulations of Eqs. (9), (10), 
and (I1) would be useful for further understanding kinetics of domain 
growth under fields. 
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